FP-tree and COFI Based Approach for Mining of Multiple Level Association Rules in Large Databases
نویسندگان
چکیده
In recent years, discovery of association rules among itemsets in a large database has been described as an important database-mining problem. The problem of discovering association rules has received considerable research attention and several algorithms for mining frequent itemsets have been developed. Many algorithms have been proposed to discover rules at single concept level. However, mining association rules at multiple concept levels may lead to the discovery of more specific and concrete knowledge from data. The discovery of multiple level association rules is very much useful in many applications. In most of the studies for multiple level association rule mining, the database is scanned repeatedly which affects the efficiency of mining process. In this research paper, a new method for discovering multilevel association rules is proposed. It is based on FP-tree structure and uses cooccurrence frequent item tree to find frequent items in multilevel concept hierarchy.
منابع مشابه
Mining N-most interesting itemsets without support threshold by the COFI-tree
Data mining is the discovery of interesting and hidden patterns from a large amount of collected data. Applications can be found in many organisations with large databases, for many different purposes such as customer relationships, marketing, planning, scientific discovery, and other data analysis. In this paper, the problem of mining N-most interesting itemsets is addressed. We make use of th...
متن کاملAn Efficient Xml Database Mining without Candidate Generation: an Frequent Pattern Split Approach
The popularity of XML results in producing large numbers of XML documents. Therefore, to develop an approach of association rule mining on native XML databases is an important research. The FP-growth based on an FP-tree algorithm performs more efficiently than other methods of association rules mining, but it cannot be applied to native XML databases. Hence, we adaptive an improving FPtree algo...
متن کاملCMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules
Previous studies propose that associative classification has high classification accuracy and strong flexibility at handling unstructured data. However, it still suffers from the huge set of mined rules and sometimes biased classification or overfitting since the classification is based on only single high-confidence rule. In this study, we propose a new associative classification method, CMAR,...
متن کاملLoad Balancing Approach Parallel Algorithm for Frequent Pattern Mining
Association rules mining from transaction-oriented databases is an important issue in data mining. Frequent pattern is crucial for association rules generation, time series analysis, classification, etc. There are two categories of algorithms that had been proposed, candidate set generate-and-test approach (Apriori-like) and Pattern growth approach. Many methods had been proposed to solve the a...
متن کاملFP-Tree Based Algorithms Analysis: FP- Growth, COFI-Tree and CT-PRO
Mining frequent itemsets from the large transactional database is a very critical and important task. Many algorithms have been proposed from past many years, But FP-tree like algorithms are considered as very effective algorithms for efficiently mine frequent item sets. These algorithms considered as efficient because of their compact structure and also for less generation of candidates itemse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1003.1821 شماره
صفحات -
تاریخ انتشار 2010